The Sinorhizobium meliloti ntrX gene is involved in succinoglycan production, motility, and symbiotic nodulation on alfalfa.

نویسندگان

  • Dong Wang
  • Haiying Xue
  • Yiwen Wang
  • Ruochun Yin
  • Fang Xie
  • Li Luo
چکیده

Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti.

Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are pr...

متن کامل

Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production.

The production of the Sinorhizobium meliloti exopolysaccharide, succinoglycan, is required for the formation of infection threads inside root hairs, a critical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti. Two bacterial mutations, exoR95::Tn5 and exoS96::Tn5, resulted in the overproduction of succinoglycan and a reduction in symbiosis. Systematic analyses of the symbio...

متن کامل

Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti.

A successful symbiotic relationship between Sinorhizobium meliloti and its host Medicago sativa (alfalfa) depends on several signaling mechanisms, such as the biosynthesis of exopolysaccharides (EPS) by S. meliloti. Previous work in our laboratory has shown that a quorum-sensing mechanism controls the production of the symbiotically active EPS II. Recent microarray analysis of the whole-genome ...

متن کامل

Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa.

Effective invasion of alfalfa by Rhizobium meliloti Rm1021 normally requires the presence of succinoglycan, an exopolysaccharide (EPS) produced by the bacterium. However, Rm1021 has the ability to produce a second EPS (EPS II) that can suppress the symbiotic defects of succinoglycan-deficient strains. EPS II is a polymer of modified glucose-(beta-1,3)-galactose subunits and is produced by Rm102...

متن کامل

Rhizobium meliloti exopolysaccharides: genetic analyses and symbiotic importance.

Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 79 23  شماره 

صفحات  -

تاریخ انتشار 2013